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Abstract
The coronavirus disease 2019 (COVID-19) presents a severe and urgent threat to
global health. In response to the COVID-19 pandemic, many countries have
implemented nonpharmaceutical interventions (NPIs), including national workplace
and school closures, personal protection, social distancing, contact tracing, testing,
home quarantine, and isolation. To evaluate the effectiveness of these NPIs in
mitigating the spread of early COVID-19 and predict the epidemic trend in the United
Kingdom, we developed a compartmental model to mimic the transmission with
time-varying transmission rate, contact rate, disease-induced mortality rate,
proportion of quarantined close contacts, and hospitalization rate. The model was
fitted to the number of confirmed new cases and daily number of deaths in five
stages with a Markov Chain Monte Carlo method. We quantified the effectiveness of
NPIs and found that if the transmission rate, contact rate, and hospitalization rate
were approximately equal to those in the second stage of the most strict NPIs, and
the proportion of quarantined close contacts increased by 3%, then the epidemic
would die out as early as January 12, 2021, with around 1,533,000 final cumulative
number of confirmed cases, and around 55,610 final cumulative number of deaths.

Keywords: COVID-19; Reproduction number; Markov Chain Monte Carlo;
Nonpharmaceutical interventions; Predictions

1 Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December
2019 and caused numerous COVID-19 outbreaks worldwide [1]. Neither a vaccine against
the virus nor a specific treatment was available at that moment [2]. Infected individ-
uals may develop some typical symptoms, including fever, continuous cough, fatigue,
headache, and sore throat. More than 50% of the severe cases may die of the infection [3],
while some exposed and asymptomatic infectious people are also contagious [4], which
complicates the efforts to control the pandemic through intervention strategies [5].

Effective surveillance and early detection of SARS-CoV-2 transmission in unaffected
regions are essential to mitigate the initial spread of the infection and substantially reduce
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health care, economic, and societal burden [6]. The findings of the Global Health Security
Index [7] show that only 19% of countries can detect and report epidemics of potential
international concerns rapidly, and less than 5% of countries can respond to and mitigate
the spread of an epidemic promptly. Hence, almost no countries are fully prepared for
epidemics or pandemics [8]. The National Health System (NHS) of the United Kingdom
(UK) has evolved as one of the largest healthcare systems in the world, which is based on
need instead of an individual’s ability to pay for the treatment [9]. However, the UK was
one of the most affected countries by COVID-19 in the world.

The UK medical community suggested that the government should have followed the
early recommendation of the World Health Organization (WHO) based on responses to
past epidemics, including SARS in 2003, MERS in 2012, and H1N1 [10]. The UK did not
initiate a massive testing program for COVID-19 suspected patients and provide appro-
priate personal protective equipment (PPE) and pharmaceutical resources for healthcare
workers [11]. Thus, coping with this emerging infectious disease and its uncontrollable
worldwide expansion has become a great challenge. The mitigating efforts during the early
COVID-19 outbreak from January 31 to November 5, 2020 in the UK could be analyzed
in five stages. The first stage was from January 31, 2020, when the first two confirmed
cases were reported by the UK and hospitalized, till March 23, 2020, when the UK imple-
mented a national lockdown. The second stage was from March 23 to May 13, 2020, when
the UK ended the national lockdown. The third stage was from May 13 to July 4, 2020,
during which the UK gradually reopened. The fourth stage was from July 4 to September
24, 2020, during which the UK returned to normal life. The fifth stage was from Septem-
ber 24 to November 5, 2020, during which the UK intensified the NPIs due to the second
outbreak.

The effectiveness of these interventions can be quantified by an effective reproduction
number Re(t), which represents the average number of infections produced by an infected
individual during the variable infectious period [12]. If Re(t) < 1, the epidemic will die
out, otherwise, the number of new infections keeps increasing until the epidemic peaks
when Re(t) = 1. The effective reproduction number is a function of three factors, namely,
the fraction of the population that is immune to the infection, the number of contacts
between individuals after implementing NPIs or using PPE, and the length of time during
which an infectious person is spreading the virus. Because the fraction of people who were
immune to COVID-19 infection in the UK was still tiny, the epidemic did not stop because
of herd immunity. People reduced their number of contacts and used PPE to prevent the
infection. The improvement of detection efficiency could shorten the transmission time
of SARS-CoV-2 [13]. These strategies were implemented together to bring Re(t) below 1
and flatten the epidemic curve. Thus, the trend of the epidemic growth across the UK was
no longer exponential since the strengthening of the NPIs [13].

Mathematical models play a crucial role in epidemiology for understanding and predict-
ing the spread of infectious diseases. Two commonly used approaches are modeling us-
ing differential equations and modeling using agent-based network models. In the case of
differential equations, these models describe the interactions between different compart-
ments of a population (e.g., susceptible, infected, recovered) using differential equations
[14–16]. They are often used to capture the average behavior of a population and provide
insights into the dynamics of disease transmission. On the other hand, agent-based net-
work models simulate the interactions between individual agents in a population, allow-



Zhang and Jing Advances in Continuous and Discrete Models          (2024) 2024:7 Page 3 of 23

ing for a more detailed representation of heterogeneities and network structures [17–19].
These models capture the behavior and movement patterns of individuals and can pro-
vide insights into the impact of individual-level factors on disease spread. We developed
a system of ordinary differential equations (ODEs) to study the transmission dynamics of
COVID-19 in the UK. The uncertainty in the model parameters can lead to significant
inaccuracy in model projections [20]. We used a Markov Chain Monte Carlo (MCMC)
method to estimate the mean values of these parameters and quantify this uncertainty
[21]. We applied the Delayed Rejection Adaptive Metropolis (DRAM) algorithm to en-
sure the accuracy of parameter estimations [22].

We fitted the model with the daily number of confirmed new cases and daily number
of deaths in the five stages from January 31 to November 5, 2020. We drove the effective
reproduction numbers for the five stages. We used the partial rank correlation coefficient
(PRCC) for the global sensitivity analysis. The model predicted the future trends of the
epidemic and evaluated the effectiveness of NPIs under different scenarios.

2 The mathematical model
Based on the clinical progress of COVID-19, the epidemiological characteristics, and the
countermeasures in the UK, we developed a compartmental model where individuals are
divided into susceptible (S), exposed (E), symptomatic infectious (I), asymptomatic in-
fectious (A), hospitalized (H), recovered (R), dead (D), quarantined susceptible (Sq), and
quarantined exposed (Eq) compartments.

The schematic diagram for the model is illustrated in Figure 1, and the model parame-
ters as well as initial values are shown in Tables 1 and 2. Let the transmission probability
be β(t) and the contact rate be c(t). The susceptible individuals can be infected by E, A,
or I . A proportion, q(t), of individuals exposed to the infection is quarantined through
contact tracing. The quarantined individuals can move to the state Sq or Eq at the rate
(1 – β(t))c(t)q(t) or β(t)c(t)q(t), depending on whether they are effectively infected. The
parameter λ is the release rate of quarantined uninfected contacts, and δq(t) is the rate
at which quarantined infected individuals are hospitalized. The proportion, 1 – q(t), of
individuals exposed to the infection who are missed from the contact tracing and enter
the exposed state, E, at the rate β(t)c(t)(1 – q(t)). The fraction ρ of exposed individuals
progresses to the symptomatic infectious state I at the rate ρα, while the rest of the ex-

Figure 1 Schematic diagram of Model (1). The model that is consisted of nine compartments, namely,
susceptible (S), exposed (E), symptomatic infectious (I), asymptomatic infectious (A), hospitalized (H),
recovered (R), dead (D), quarantined susceptible (Sq), and quarantined exposed (Eq), describes the
transmission dynamic of SARS-CoV-2
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Table 1 Parameters of Model (1)

Parameter Description Unit Estimated
mean value

Std 95% CI Source

β(t) The transmission
probability

Dimensionless 0.0293 0.0016 [0.0262, 0.0324] MCMC
0.0197 0.0010 [0.0177, 0.0217]
0.0037 0.0008 [0.0021, 0.0053]
0.0427 0.0025 [0.0378, 0.0476]
0.0659 0.0082 [0.0498, 0.0820]

c(t) The contact rate 1/Day 13.8780 0.6569 [12.5905, 15.1655] MCMC
5.6702 0.2203 [5.2384, 6.1020]
9.2718 0.5021 [8.2877, 10.2559]
10.9740 0.5102 [9.9740, 11.9740]
11.3180 0.5625 [10.2155, 12.4205]

α The incubation rate of
exposed individuals

1/Day 1/5 – – [23]

ρ The fraction of
symptomatic infectious
individuals

Dimensionless 0.6 – – [24]

γI The recovery rate of
symptomatic infectious
individuals

1/Day 1/12 – – [25]

γH The recovery rate of
hospitalized individuals

1/Day 1/10 – – [26]

γA The recovery rate of
asymptomatic infectious
individuals

1/Day 1/9.5 – – [27]

δI(t) The rate at which
symptomatic infectious
individuals are
hospitalized

1/Day 0.0432 0.0131 [0.0175, 0.0689] MCMC
0.0536 6.59× 10–3 [0.0407, 0.0665]
0.0379 7.16× 10–3 [0.0237, 0.0521]
0.1823 8.38× 10–3 [0.1659, 0.1987]
0.0309 0.0139 [0.0037, 0.0581]

μ(t) The disease-induced
mortality rate

1/Day 7.23× 10–4 2.00× 10–4 [3.32× 10–4,
1.11× 10–3]

MCMC

5.53× 10–3 5.40× 10–4 [4.48× 10–3,
6.59× 10–3]

3.05× 10–3 2.18× 10–4 [2.62× 10–3,
3.47× 10–3]

7.66× 10–4 1.50× 10–4 [4.71× 10–4,
1.06× 10–3]

1.12× 10–3 1.17× 10–4 [8.86× 10–4,
1.34× 10–3]

θ The factor for reduced
transmission rate in
asymptomatic infectious
individuals

Dimensionless 0.5 – – [28]

ν The factor for reduced
transmission rate among
exposed individuals

Dimensionless 0.5 – – [29]

q(t) The proportion of
quarantined close
contacts

Dimensionless 0 – – Assume
0 – –
0.8517 0.0628 [0.7286, 0.9748] MCMC
0.5178 0.0280 [0.4629, 0.5727]
0.8231 0.0243 [0.7755, 0.8707]

λ The release rate of the
quarantined uninfected
lose contacts

1/Day 1/14 – – [30]

δq(t) The rate at which
quarantined infected
individuals are
hospitalized

1/Day 0 – – Assume
0 – –
0.0574 0.0071 [0.0435, 0.0713] MCMC
0.1738 0.0198 [0.1350, 0.2126]
0.1186 0.0136 [0.0919, 0.1453]
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Table 2 Initial values of Model (1)

Initial value Description Unit Estimated Std 95%CI Source

S(0) The initial size of
susceptible population

Number 66,573,504 – – [31]

E(0) The initial size of Number 11.3230 1.1634 [9.0427, 13.6033] MCMC
I(0) The initial size of

symptomatic infectious
population

Number 4.1686 0.3280 [3.5257, 4.8115] MCMC

A(0) The initial size of
asymptomatic infectious
population

Number 1.4524 0.3050 [0.8546, 2.0502] MCMC

Sq(0) The initial size of
quarantined susceptible
population

Number 0 – – Assume

Eq(0) The initial size of
quarantined exposed
population

Number 0 – – Assume

H(0) The initial number of
hospitalized individuals

Number 2 – – [2]

R(0) The initial number of
recovered individuals

Number 0 – – [2]

D(0) The initial number of
dead individuals

Number 0 – – [2]

posed individuals enter the asymptomatic infectious state, A, at the rate (1 – ρ)α. The
asymptomatic infectious individuals recover at the rate γA. The symptomatic infectious
individuals are hospitalized at the rate δI(t) and recover at the rate γH , or die at the rate
μ(t). The resulting system of ODEs is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) = –[β(t)c(t) + c(t)q(t)(1 – β(t))] S
N (νE + θA + I) + λSq,

E′(t) = β(t)c(t)(1 – q(t)) S
N (νE + θA + I) – αE,

I ′(t) = ραE – (γI + δI(t) + μ(t))I,

A′(t) = (1 – ρ)αE – γAA,

S′
q(t) = c(t)q(t)(1 – β(t)) S

N (νE + θA + I) – λSq,

E′
q(t) = c(t)q(t)β(t) S

N (νE + θA + I) – δq(t)Eq,

H ′(t) = δI(t)I + δq(t)Eq – (γH + μ(t))H ,

R′(t) = γI I + γAA + γHH ,

D′(t) = μ(t)(I + H).

(1)

The total number of individuals is

N(t) = S(t) + E(t) + I(t) + A(t) + Sq(t) + Eq(t) + H(t) + R(t) + D(t).

We assume that the transmission rate, β(t), the contact rate, c(t), the disease-induced mor-
tality rate, μ(t), the rate at which symptomatic infectious individuals are hospitalized, δI(t),
the quarantined proportion of close contacts, q(t), and the rate at which quarantined in-
fected individuals are hospitalized, δq(t), all vary with time t. These time-dependent pa-
rameters reflect the effect of varying NPIs over the five stages.
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3 Parameter estimation and data fitting
The cumulative number of confirmed cases, the total number of deaths, the daily number
of confirmed new cases, and the daily number of deaths were obtained from the official
UK Government website [2].

We assumed S(0) = 66,573,504, which was the total population of the UK [31]. On Jan-
uary 31, 2020, as the first two confirmed cases were reported by the UK and hospitalized,
we assumed H(0) = 2, and January 31, 2020, was the start date. At this time, no one was
recovered, quarantined, or dead, R(0) = Sq(0) = Eq(0) = D(0) = 0. The parameters used in
the simulations were α = 1/5 [23], ρ = 0.6 [24], γI = 1/12 [25], γH = 1/10 [26], γA = 1/9.5
[27], ν = θ = 0.5 [28, 29], and λ = 1/14 [30].

Let C(t,χ ) and D(t,χ ) represent the cumulative number of confirmed cases and cumu-
lative number of deaths, respectively. The dynamic equations of C(t,χ ) and D(t,χ ) are as
follows:

⎧
⎨

⎩

dC(t,χ )
dt = δI(t)I + δq(t)Eq,

dD(t,χ )
dt = μ(t)(I + H),

where χ represents an unknown parameter set. The daily confirmed cases and deaths are

⎧
⎨

⎩

PC(i,χ ) =
∫

day i
(
δI(t)I + δq(t)Eq

)
dt,

PD(i,χ ) =
∫

day i μ(t)(I + H) dt.

We used the MCMC method to estimate β(t), c(t), μ(t), δI(t), q(t), and δq(t) by fitting the
model to the number of confirmed new cases and daily number of deaths. Other param-
eters were kept constant, as listed in Table 1. We ran the DRAM algorithm for 20,000
iterations with the last 5000 iterations converged after the initial ‘burn-in’ period. The
Geweke convergence diagnostic was employed to assess the convergence of chains. More
details on the MCMC method can be found in Appendix A.

Figures 2(A)–(D) show the fitting curves for the number of confirmed new cases, the
cumulative number of confirmed cases, the daily number of deaths, and the cumulative
number of deaths in five stages from January 31 to November 5, 2020, respectively. The
symbols ‘+’ represent the reported number of confirmed new cases in (A), the cumulative
number of confirmed cases in (B), the daily number of deaths in (C), and the cumulative
number of deaths in (D), respectively. The shadow represents 95% confidence intervals
(CIs). The dotted lines indicate the division of each stage. Figure 10 shows a high correla-
tion between the number of estimated cases and the number of reported cases, indicating
a good fitting effect.

MCMC approach provided the estimated mean value of β(t), c(t), μ(t), and δI(t) in five
stages, q(t) and δq(t) in three stages as shown in Table 1 and Figure 9. We used profile
analysis to verify that all these parameters are identifiable when fitting this model to the
data [32].

4 The effective reproduction number Re(t)
The effective reproduction number, Re(t), is the mean number of secondary cases pro-
duced by an infected individual at any time, t, during an epidemic, which can be used to
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Figure 2 The fitting curves for the five stages (from January 31 to November 5, 2020). (A) The fitting curves
for the number of confirmed new cases in the five stages. (B) The fitting curves for the cumulative number of
confirmed cases in the five stages. (C) The fitting curves for the daily number of deaths in the five stages. (D)
The fitting curves for the cumulative number of deaths in the five stages. The symbols ‘+’ represent the
reported number of confirmed new cases in (A), the cumulative number of confirmed cases in (B), the daily
number of deaths in (C), and the cumulative number of deaths in (D), respectively. The shaded parts
correspond to 95% CIs. The dotted lines indicate the dividing lines of each stage

quantify the effectiveness of different mitigation strategies [33]. The effective reproduc-
tion numbers, Re(t) is

Re(t) = RE
e (t) + RA

e (t) + RI
e(t), (2)

where

RE
e (t) = β(t)c(t)

(
1 – q(t)

) ν

α

S(t)
N(t)

,

RA
e (t) = β(t)c(t)

(
1 – q(t)

)θ (1 – ρ)
γA

S(t)
N(t)

,

RI
e(t) = β(t)c(t)

(
1 – q(t)

) ρ

γI + δI(t) + μ(t)
S(t)
N(t)

.

Here, the effective reproduction numbers associated with the exposed population, RE
e (t),

represents the number of secondary cases produced by an exposed infected individual at
any time during the incubation period, where νβ(t)c(t)(1 – q(t)) is the transmission rate
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Figure 3 The effective reproduction number, Re(t), varies with time in the five stages (from January 31 to
November 5, 2020). The areas from dark to light colors correspond to 50%, 90%, 95%, and 99% CIs

of exposed individuals who are missed through the contact tracing, and 1/α is the average
length of the incubation period.

The effective reproduction numbers associated with the asymptomatic infected popu-
lation, RA

e (t), is the number of secondary cases produced by an asymptomatic infectious
individual at any time during the asymptomatic infectious period. The factor 1 – ρ is the
probability that an infectious individual is asymptomatic. In this expression, θ represents
a reduction in the transmission rate of asymptomatic infectious individuals and 1/γA is
the average length of the asymptomatic infectious period.

The effective reproduction numbers associated with the symptomatic infected popula-
tion, RI

e(t), is the number of secondary cases produced by a symptomatic infectious indi-
vidual during the infectious period, weighted by ρ , the probability that an infectious indi-
vidual shows symptoms. Here, 1/(γI +δI(t) +μ(t)) is the average length of the symptomatic
infectious period. The values for each of these reproduction numbers can be approximated
using the parameters estimated by the DRAM algorithm.

Figure 3 shows the effective reproduction number, Re(t), plotted as a function of time in
each of the five stages. The areas from dark to light colors correspond to 50%, 90%, 95%,
and 99% CIs. The mean values of for five stages are 3.7070 (95% CI: 3.3890–4.0255), 0.9500
(95% CI: 0.9216–0.9784), 0.0465 (95% CI: 0.0063–0.0867), 1.4470 (95% CI: 1.3990–1.5000),
and 1.1605 (95% CI: 1.108–1.2075), respectively.

5 The global sensitivity analysis
We use the PRCC to study the global sensitivity of the parameters of Model (1). According
to the estimated results of these parameters in Table 1, we choose a normal distribution for
these parameters, where the mean and standard deviation are given in Table 1. The values
of PRCCs for each stage are plotted in Figure 4 to show the importance of the parameters.
The input parameters and output variables are positively (or negatively) correlated if the
values of PRCCs are positive (or negative). The input parameters and output variables are
strongly (moderately or weakly) correlated if the absolute values of PRCCs are between
0.4 and 1 (between 0.2 and 0.4 or between 0 and 0.2).

In Figure 4, the effective reproduction number, Re(t), and the transmission rate, β(t),
are strongly positively correlated in stages 1, 2, and 3, moderately positively correlated in
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Figure 4 The global sensitivity analysis. The light gray areas represent PRCC values corresponding to weak
correlation, the dark gray areas represent PRCC values corresponding to moderate correlation, and the white
areas represent PRCC values corresponding to strong correlation

stage 4, and weakly correlated in stage 5. The effective reproduction number, Re(t), and the
contact rate, c(t), are strongly positively correlated in stages 1 and 2, moderately positively
correlated in stages 3 and 4, and weakly correlated in stage 5. The effective reproduction
number, Re(t), and the rate at which symptomatic infectious individuals are hospitalized,
δI(t), are strongly negatively correlated in stages 1, 2, and 5, and weakly correlated in stages
3 and 4. The effective reproduction number, Re(t), and the quarantined proportion of close
contacts, q(t), are strongly negatively correlated in stage 3, moderately negatively corre-
lated in stage 5, and weakly correlated in stage 4.

6 Predicting the epidemic propagation
Using our model with estimated parameters, we predict the trend of the early COVID-
19 epidemic in the UK and evaluate the effectiveness of NPIs. In Figure 5(A), the purple
curve shows that the number of confirmed new cases peaks on May 1, 2020, and the peak
size is 465,000, if the NPIs of the first stage continue being implemented. The green curve
shows that the number of confirmed new cases would be close to zero by November 18,
2022, if the NPIs of the second stage continue. The blue curve shows that the number of
confirmed new cases would be close to zero by September 19, 2020, if the NPIs of the third
stage continue. The pink curve shows that the number of confirmed new cases with the
NPIs of the fourth stage peaks on December 25, 2020, and the peak size is 69,400. The
cyan curve shows that the number of confirmed new cases peaks on January 31, 2021, and
the peak size is 39,890 with the NPIs of the fifth stage.

In Figure 5(B), the purple curve shows that the final cumulative number of confirmed
cases would be around 13,260,000, if the NPIs during the first stage continue. The green
curve shows that the final cumulative number of confirmed cases would be around
817,100, if the NPIs in the second stage remain. The blue curve shows that the final cumu-
lative number of confirmed cases would be around 330,700, if the NPIs in the third stage
remain. The pink curve shows that the cumulative number of confirmed cases would be
around 16,760,000 by the end of 2022, if the NPIs in the fourth stage remain. The cyan
curve shows that the cumulative number of confirmed cases would be around 13,660,000
by the end of 2022, if the NPIs in the fifth stage remain.



Zhang and Jing Advances in Continuous and Discrete Models          (2024) 2024:7 Page 10 of 23

Figure 5 The impact of different NPIs on epidemic propagation. (A) The impact of different NPIs on the
number of confirmed new cases. (B) The impact of different NPIs on the cumulative number of confirmed
cases. (C) The impact of different NPIs on the daily number of deaths. (D) The impact of different NPIs on the
cumulative number of deaths. The purple, green, blue, pink, and cyan curves show the number of confirmed
new cases with the NPIs of the five stages in (A), the cumulative number of confirmed cases with the NPIs of
the five stages in (B), the daily number of deaths with the NPIs of the five stages in (C), the cumulative number
of deaths with the NPIs of the five stages in (D), respectively

In Figure 5(C), the purple curve shows that the daily number of deaths peaks on May 2,
2020, and the peak size is 10,030 if the NPIs of the first stage continue. The green curve
shows that the daily number of deaths would be close to zero by June 11, 2022, if the NPIs
of the second stage continue. The blue curve shows that the daily number of deaths would
be close to zero by September 7, 2020, if the NPIs of the third stage continue. The pink
curve shows that the number of confirmed new cases peaks on January 5, 2021, and the
peak size is 598 with the NPIs of the fourth stage. The cyan curve shows that the number
of confirmed new cases peaks on February 10, 2021, and the peak size is 487 with the NPIs
of the fifth stage.

In Figure 5(D), the purple curve shows that the final cumulative number of deaths would
be around 317,100, if the NPIs during the first stage continue. The green curve shows that
the final cumulative number of deaths would be around 125,900, if the NPIs in the second
stage remain. The blue curve shows that the final cumulative number of deaths would
be around 41,360, if the NPIs in the third stage remain. The pink curve shows that the
cumulative number of deaths would be around 185,000 by the end of 2022, if the NPIs
in the fourth stage remain. The cyan curve shows that the cumulative number of deaths
would be around 203,900 by the end of 2022, if the NPIs in the fifth stage remain.
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The findings reveal the significant impact of NPIs on the dynamics of the disease spread.
The higher peaks of confirmed new cases and daily deaths associated with the NPIs of the
first stage emphasize the importance of implementing timely and stringent measures to
mitigate the spread of the disease. The lower cumulative number of cases and deaths in the
second and third stages underscores the effectiveness of NPIs in containing and managing
the outbreak. Particularly, the lowest cumulative number of cases and deaths in the third
stage signifies the critical role of NPIs at this phase. However, the proportion of deaths
in the five stages is 2.4%, 15%, 13%, 1.1%, and 1.5%, respectively, which corresponds to
the mortality rate μ(t) in the five stages, as shown in Figure 9. We found that although
the cumulative number of cases and deaths in the second and third stages is lower than
in other stages, the proportion of deaths is higher than in other stages. Moreover, the
effectiveness of close contact tracing and lockdown measures in reducing the peaks of
confirmed new cases and daily deaths highlights the proactive measures that can be taken
to curb the impact of the disease. These findings emphasize the critical importance of
implementing targeted and robust NPIs, alongside proactive contact tracing and stringent
lockdown measures, in safeguarding public health and reducing the burden on healthcare
systems.

From November 5, 2020, the community in the UK implemented lockdown again, which
could reduce the transmission rate, β(t), and the contact rate, c(t). In Figures 11 and 6, we
simulate the effect of lockdown.

In Figure 11, the cyan curves display the daily number of confirmed cases in (A), the
cumulative number of confirmed cases in (B), the daily number of deaths in (C), and the
cumulative number of deaths in (D), assuming the NPIs in the fifth stage remain in effect
with a given transmission rate (β = 0.0658). The purple, green, and blue dotted lines repre-
sent the projected statistics for the number of confirmed new cases in (A), the cumulative
number of confirmed cases in (B), the daily number of deaths in (C), and the cumulative
number of deaths in (D) when the transmission rates are reduced by 5%, 15%, and 45%,
respectively. From a qualitative perspective, it is anticipated that by December 31, 2022,
under the scenarios of reduced transmission rates, there will be noticeable decreases in
the cumulative number of confirmed cases and deaths. Specifically, a 5% reduction in the
transmission rate is expected to lead to a moderate decrease in both confirmed cases and
deaths. A 15% reduction is projected to result in a significant reduction, while a 45% re-
duction is anticipated to have a substantial impact, with considerable decreases in both
confirmed cases and deaths. These findings suggest that implementing measures to lower
the transmission rate can have a positive influence on controlling the spread of the epi-
demic and mitigating its impact on public health.

In Figure 6, the cyan curves show the daily number of confirmed cases in (A), the cumu-
lative number of confirmed cases in (B), the daily number of deaths in (C), and the cumula-
tive number of deaths in (D) with NPIs at stage five remaining constant (c = 11.318). The
purple, green, and blue dotted lines show the same variables when contact rates are re-
duced by one (e.g., c = 11.318 – 1), two (e.g., c = 11.318 – 2), and three (e.g., c = 11.318 – 3),
respectively. By December 31, 2022, the cumulative number of confirmed cases will re-
duce by 30.63%, 61.54%, and 77.02%, respectively, and the cumulative number of deaths
will reduce by around 25.06%, 50.37%, and 63.05%, respectively. We can anticipate that a
reduction in contact rates will lead to a gradual decrease in the daily number of newly con-
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Figure 6 The impact of reducing the contract rate, c, on epidemic propagation. (A) The impact of decreasing
the contract rate, c, on the number of confirmed new cases. (B) The impact of decreasing the contract rate, c,
on the cumulative number of confirmed cases. (C) The impact of decreasing the contract rate, c, on the daily
number of deaths. (D) The impact of decreasing the contract rate, c, on the cumulative number of deaths

firmed cases and daily deaths. This implies that altering the contact rates will slow down
the spread of the disease and lower the overall number of cases. Moreover, the growth
rates of cumulative confirmed cases and cumulative deaths will also be influenced, with
larger reductions in contact rates resulting in more significant decreases. The qualitative
analysis suggests that reducing contact rates will have a positive impact on disease trans-
mission and case numbers, potentially slowing the spread of the outbreak and reducing
mortality rates.

Next, we test the impact of the rate at which symptomatic infectious individuals are hos-
pitalized and the quarantined proportion of close contacts on epidemic propagation. In
Figure 12, we simulate the effect of increasing the rate of hospitalization for symptomatic
infectious individuals, δI(t). The cyan curves show the daily number of confirmed cases
in (A), the cumulative number of confirmed cases in (B), the daily number of deaths in
(C), and the cumulative number of deaths in (D) with NPIs at stage five remaining con-
stant (δI = 0.0309). The purple, green, and blue dotted lines represent the same variables
when δI(t) increases by 1.5, 2.5, and 5.5 times, respectively. We found that increasing the
rate at which symptomatic infectious individuals are hospitalized can significantly affect
the epidemic propagation. A higher hospitalization rate can lead to a decrease in the daily
number of confirmed cases and deaths, as well as a reduction in the cumulative number of
confirmed cases and deaths over time. Specifically, a higher hospitalization rate can result
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Figure 7 The impact of increasing the quarantined proportion of close contact individuals, q, on epidemic
propagation. (A) The impact of increasing the quarantined proportion of close contact individuals, q, on the
number of confirmed new cases. (B) The impact of increasing the quarantined proportion of close contact
individuals, q, on the cumulative number of confirmed cases. (C) The impact of increasing the quarantined
proportion of close contact individuals, q, on the daily number of deaths. (D) The impact of increasing the
quarantined proportion of close contact individuals, q, on the cumulative number of deaths

in a more rapid isolation and treatment of infected individuals, which in turn can reduce
the spread of the disease within the community. This can lead to a decline in the overall
number of cases and deaths, as well as a slower growth rate in the cumulative numbers.
Furthermore, by quarantining a higher proportion of close contacts, there can be a further
reduction in the transmission of the disease. This can potentially limit the number of new
cases and decrease the overall impact of the epidemic.

In Figure 7, we simulate the effect of increasing the quarantined proportion of close
contacts, q(t). The cyan curves show the daily number of confirmed cases in (A), the cu-
mulative number of confirmed cases in (B), the daily number of deaths in (C), and the
cumulative number of deaths in (D), if the NPIs in the fifth stage remain (q = 0.8231).
The purple, green, and blue dotted lines represent the number of confirmed new cases
in (A), the cumulative number of confirmed cases in (B), the daily number of deaths in
(C), and the cumulative number of deaths in (D), when the quarantined proportion of
close contact individual, q(t), increases by 1%, 3%, and 5%, respectively. We found that
increasing the proportion of quarantine for close contacts may have a significant impact
on the spread of the epidemic. By isolating close contacts more widely, it may effectively
reduce the spread of the virus within the community, thereby lowering the daily number
of confirmed cases and deaths. A higher quarantine proportion may lead to the cutting off
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Figure 8 Predicting the epidemic propagation. (A) Predicting the number of confirmed new cases. (B)
Predicting the cumulative number of confirmed cases. (C) Predicting the daily number of deaths. (D)
Predicting the cumulative number of deaths

of more potential chains of virus transmission, thus slowing the spread of the epidemic.
This could potentially decrease the number of new cases and reduce the risk of infection
within the community. Additionally, increasing the quarantine for close contacts may limit
the continued spread of the epidemic, thereby reducing the strain on medical resources
and systems. This could help in reducing the cumulative number of confirmed cases and
deaths.

Finally, we predict the epidemic propagation under different scenarios. In Figure 8, the
cyan curves show the daily number of confirmed cases in (A), the cumulative number of
confirmed cases in (B), the daily number of deaths in (C), and the cumulative number of
deaths in (D), if the NPIs in the fifth stage remain (β = 0.0659, c = 11.318, δI = 0.0309,
and q = 0.8231). The purple dotted lines represent the number of confirmed new cases
in (A), the cumulative number of confirmed cases in (B), the daily number of deaths in
(C), and the cumulative number of deaths in (D), when β = 0.95 × 0.0659, c = 11.318 – 1,
δI = 0.0309, and q = 0.8231. The green dotted lines represent the number of confirmed new
cases in (A), the cumulative number of confirmed cases in (B), the daily number of deaths
in (C), and the cumulative number of deaths in (D), when β = 0.55×0.0659, c = 11.318 – 3,
δI = 0.0309, and q = 0.8231. The blue dotted lines represent the number of confirmed new
cases in (A), the cumulative number of confirmed cases in (B), the daily number of deaths
in (C), and the cumulative number of deaths in (D), when β = 0.3 × 0.0659, c = 11.318 – 6,
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δI = 1.7 × 0.0309, and q = 1.03 × 0.8231, where the values of β , c, and δI are approximate
to the second stage (β = 0.0197, c = 5.6702, and δI = 0.0536, as shown in Table 1).

The predictions suggest that implementing different levels of interventions can have a
significant impact on reducing the spread of the disease and lowering the associated mor-
tality by December 31, 2022. Under the purple scenario, which represents a moderate de-
crease in transmission and contact rates, there is an expected decrease in the cumulative
number of confirmed cases by approximately 48.32%. This indicates that even small re-
ductions in transmission and contact rates can lead to a noticeable decrease in the spread
of the disease. The green and blue scenarios, with more substantial decreases in transmis-
sion and contact rates as well as an increase in isolation rate, show even larger reductions
in the cumulative number of confirmed cases, by approximately 87.25% and 88.78% re-
spectively. This suggests that implementing more aggressive interventions can result in
a drastic reduction in the spread of the disease within the population. Furthermore, un-
der all scenarios, there is an expected decrease in the cumulative number of deaths by
approximately 39.53%, 71.44%, and 72.73% under the purple, green, and blue scenarios,
respectively. This indicates that these interventions can also have a positive impact on re-
ducing mortality associated with the disease, and the more intensive interventions have a
greater potential for saving lives.

In summary, the findings indicate that even small reductions in transmission and contact
rates can lead to a noticeable decrease in the spread of the disease, while more aggressive
interventions can result in a significant reduction in both the spread of the disease and
its associated mortality. These results highlight the potential impact of different levels of
interventions in managing the disease outbreak.

7 Discussion and conclusions
We fitted our compartmental differential equation model to the number of confirmed new
cases and daily number of deaths in the five stages from January 31 to November 5, 2020.

The model projections indicated that if the NPIs in the fifth stage remained, the epi-
demic could last more than two years. In this case, the cumulative number of confirmed
cases would be around 13,660,000, and the cumulative number of deaths would be around
203,900 by December 31, 2022.

The simulations also showed that if community lockdown started from November 5,
2020, the transmission rate, the contact rate, and the rate at which symptomatic infec-
tious individuals are hospitalized were approximately equal to those in the second stage
of the most strict NPIs, and the proportion of quarantined close contacts increased by
3%, then the epidemic could die out as early as January 12, 2021, the final cumulative
number of confirmed cases would be around 1,533,000, as shown in Figure 8(B), and the
final cumulative number of deaths would be around 55,610, as shown in Figure 8(D). On
November 5, 2020, the UK did not implement NPIs as strictly as the second stage. Hence,
we assumed the transmission rate reduced by 45%, the contact rate reduced by 26.5%, the
hospitalization rate and proportion of quarantined close contacts were the same as those
in the fifth stage, then the epidemic could die out around July 4, 2021, the final cumulative
number of confirmed cases would be around 1,741,000, and the final cumulative number
of deaths would be around 58,240. Finally, we assumed that the UK implemented weak
interventions from November 5, 2020, that were, the transmission rate decreased by 5%,
the contact rate reduced by 8.84%, the hospitalization rate and proportion of quarantined
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close contacts were the same as those in the fifth stage, then the epidemic could last more
than two years, the cumulative number of confirmed cases would be around 7,060,000, and
the cumulative number of deaths would be around 123,300 by December 31, 2022. Even
if the weak NPIs were implemented, the cumulative number of confirmed cases would
reduce by 48.32%, and the cumulative number of deaths would reduce by around 39.53%
by December 31, 2022. Hence, the NPIs could save a large number of lives.

Here, we demonstrated data-driven studies, assuming that multiple NPIs including but
not limited to quarantine, contact tracing, social distancing, self-isolation, and commu-
nity lockdown. The health and economic impacts of different interventions need to be
balanced in the short and long term in any society. The epidemiological data implied that
no country had yet seen enough infections to prevent the second wave of transmission by
herd immunity if lockdown interventions were relaxed by November 2020.

The dynamics of person-to-person transmission are mainly driven by contacts between
individuals [34, 35], which can be heterogeneous due to age and location, and to viral
loads of infected individuals. Once the travel restrictions are lifted, human mobility will
contribute to the rapid epidemic propagation within the UK [36].

In our study, we found that NPIs such as quarantine, contact tracing, social distancing,
self-isolation, and community lockdown play a crucial role in controlling the spread of epi-
demics. This is consistent with the findings of previous studies [37–39]. The data-driven
studies presented in our study highlight the potential of these interventions to significantly
impact the trajectory of the epidemic. It is clear that while these NPIs can have profound
health benefits in terms of reducing the cumulative number of confirmed cases and deaths,
the economic and social impacts also need to be considered. Our simulation results em-
phasize the need to balance the short-term and long-term effects of these interventions on
both health and the economy. Additionally, the study underscores the importance of con-
tinued vigilance and caution, as lifting lockdown interventions too early could potentially
lead to a second wave of transmission. Overall, the dynamic nature of person-to-person
transmission and the influence of human mobility after travel restrictions are lifted further
emphasize the significance of effective NPIs in mitigating epidemic propagation.

These projections all depend on the sensitivity of the simulations to the model assump-
tions. Our model did not account for the heterogeneity in the behavior of individuals, the
population density, or the disease mortality as a function of age. We are continuing to
refine our model to understand the impact of these effects and capture them more realis-
tically in future models.

Appendix A: MCMC method for parameter estimation
Let ε represent the fitting error, following an independent Gaussian distribution with a
mean of zero and unknown variance ξ 2, as per the Central Limit Theorem. Accordingly,
the observations y can be expressed as

y = f (x,χ ) + ε, ε ∼ N
(
0, Iξ 2). (3)

Here, f (x,χ ) denotes the nonlinear model (PC(i,χ ) and PD(i,χ )), x represents the inde-
pendent variables, and χ stands for the unknown parameters and initial values. For sim-
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plicity, we assume that the unknown parameters χ of the system are independent Gaussian
prior specifications. Therefore, we have

χ̂j ∼ N
(
νj,ϕ2

j
)
, j = 1, . . . , M,

where M is the number of unknown parameters. Additionally, we further assume that the
inverse of the error variance follows a gamma distribution as a prior with the form

p
(
ξ–2) ∼ �

(
n0

2
,

n0

2
S2

0

)

,

where S2
0 and n0 are the prior mean and accuracy of the variance ξ 2, respectively.

The likelihood function p(y|χ , ξ 2) for � independent identically distributed observa-
tions with a Gaussian error model is

p
(
y|χ , ξ 2) =

(
1

√
2πξ 2

)�

exp

[
–SS(χ )

2ξ 2

]

,

where SS(χ ) represents the sum of squares function

SS(χ ) =
�∑

i=1

[
yi – f (χ )i)2].

The conditional distribution p(ξ–2|y,χ ) can be expressed as follows:

p
(
ξ–2|y,χ

) ∝ p
(
y|ξ–2,χ

)
p
(
ξ–2)

=
(

1√
2πξ–1

)�

exp

[
–SS(χ )

2ξ–2

] ( n0
2 S2

0)
n0
2

�( n0
2 )

(
ξ–2)– n0

2 –1
exp

[

–
n0S2

0
2ξ–2

]

∝ (
ξ–2)– �+n0

2 –1
exp

[

–
SS(χ ) + n0S2

0
2ξ–2

]

.

According to the conditional conjugacy property of the Gamma distribution [40], the
conditional distribution p(ξ–2|y,χ ) is also a Gamma distribution with the following pa-
rameters:

p
(
ξ–2|y,χ

)
= �

(
� + n0

2
,

SS(χ ) + n0S2
0

2

)

.

This is used to sample and update ξ–2 for other parameters within each run of Metropolis–
Hastings (MH) simulation steps. Assuming independent Gaussian prior specification for
parameters χ , the prior sum of squares for the given parameters χ can be calculated as
follows:

SSpri(χ ) =
M∑

i=1

[
χi – νi

ϕi

]2

.



Zhang and Jing Advances in Continuous and Discrete Models          (2024) 2024:7 Page 18 of 23

Hence, for a fixed value of variance ξ 2, the posterior distribution of parameters χ can be
expressed as follows:

p
(
χ |y, ξ 2)

∝ p
(
y|χ , ξ 2)p(χ1)p(χ2) · · ·p(χM) = p

(
ȲC|χ , ξ 2)

M∏

i=1

p(χi)

=
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1
√

2πξ 2

)�

exp
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–SS(χ )

2ξ 2
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1√
2πϕj

exp
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]
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](
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)M 1
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∝ exp
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–
1
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ξ 2 + SSpri(χ )
)]

,

and the posterior ratio needed in the MH acceptance probability can be written as fol-
lows:

p(χ ′|y, ξ 2)
p(χ |y, ξ 2)

= exp

[

–
1
2

(
SS(χ )

ξ 2 –
SS(χ ′)

ξ 2

)

+
1
2
(
SSpri(χ ) – SSpri

(
χ ′))

]

.

Accordingly, the new unknown parameter value χ will be accepted with probabil-
ity

min

(

1,
p(χ ′∣∣y, ξ 2)
p(χ |y, ξ 2)

)

.

In addition, if asymmetric distribution is chosen as the proposal distribution, the accep-
tance probability is

min

(

1,
p(χ ′∣∣y, ξ 2)q(χ ,χ ′)
p(χ |y, ξ 2)q(χ ′,χ )

)

.

Next, we give the details of Delaying Rejection [22]. Suppose the current position of the
Markov chain is Xt = x. As in a regular MH, a candidate move G1 is generated from a
proposal q1(x, ·) and accepted with the usual probability

α1(x, g1) = min

(

1,
p(g1)q1(g1, x)
p(x)q1(x, g1)

)

= min

(

1,
N1

D1

)

. (4)

After a rejection, rather than remaining at the same position, Xt+1 = x, as in a standard
MH algorithm, a second stage move G2 is suggested. This second stage proposal can be
based not only on the current position of the chain but also on the previously proposed
and rejected value: q2(x, g1, ·). The acceptance of the second stage proposal occurs with a
probability denoted by

α2(x, g1, g2) = min

(

1,
p(g2)q1(g2, g1)q2(g2, g1, x)[1 – α1(g2, g1)]

p(x)q1(x, g1)q2(x, g1, g2)[1 – α1(x, g1)]

)

= min

(

1,
N2

D2

)

.
(5)
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This process of delaying rejection can be iterated and the ith stage acceptance probability
is

αi(x, g1, . . . , gi) = min

(

1,
p(gi)q1(gi, gi–1)q2(gi, gi–1, gi–2) · · ·qi(gi, gi–1, . . . , x)

p(x)q1(x, g1)q2(x, g1, g2) · · ·qi(x, g1, . . . , gi)

× [1 – α1(gi, gi–1)][1 – α2(gi, gi–1, gi–2)] · · · [1 – αi–1(gi, . . . , g1)]
[1 – α1(x, g1)][1 – α2(x, g1, g2)] · · · [1 – αi–1(x, g1, . . . , gi–1)]

)

= min

(

1,
Ni

Di

)

. (6)

If the ith stage is reached, it means that Nj < Dj for j = 1, . . . , i – 1. Therefore,
αj(x, gi, . . . , gj) can be rewritten asNj/Dj, j = 1, . . . , i–1, and we obtain the recursive formula

Di = qi(x, . . . , gi)(Di–1 – Ni–1)

which leads to

Di = qi(x, . . . , gi)
[
qi–1(x, . . . , gi–1)

[
qi–2(x, . . . , gi–2)

· · · [q2(x, g1, g2)
[
q1(x, g1)π (x) – N1

]
– N2

]
– N3

] · · · – Ni–1
]
.

(7)

Appendix B: Additional figures

Figure 9 The parameters β(t), c(t), δI(t), μ(t), q(t), and δq(t) varying with time in the five stages (from January
31 to November 5, 2020). The areas from dark to light colors correspond to 50%, 90%, 95%, and 99% CIs



Zhang and Jing Advances in Continuous and Discrete Models          (2024) 2024:7 Page 20 of 23

Figure 10 Pearson correlation between the number of estimated cases and the number of reported cases

Figure 11 The impact of reducing the transmission rate, β , on epidemic propagation. (A) The impact of
decreasing the transmission rate, β , on the number of confirmed new cases. (B) The impact of decreasing the
transmission rate, β , on the cumulative number of confirmed cases. (C) The impact of decreasing the
transmission rate, β , on the daily number of deaths. (D) The impact of decreasing the transmission rate, β , on
the cumulative number of deaths
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Figure 12 The impact of increasing the rate at which symptomatic infectious individuals are hospitalized, δI ,
on epidemic propagation. (A) The impact of decreasing δI on the number of confirmed new cases. (B) The
impact of decreasing δI on the cumulative number of confirmed cases. (C) The impact of decreasing δI on the
daily number of deaths. (D) The impact of decreasing δI on the cumulative number of deaths
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