
Advances in Continuous
and Discrete Models

Witbooi et al. Advances in Continuous and Discrete Models         (2023) 2023:45 
https://doi.org/10.1186/s13662-023-03791-3

R E S E A R C H Open Access

Stability and control in a stochastic model of
malaria population dynamics
Peter J. Witbooi1* , Sibaliwe Maku Vyambwera1, Garth J. van Schalkwyk1 and Grant E. Muller1

*Correspondence:
pwitbooi@uwc.ac.za
1University of the Western Cape,
Private Bag X17, Bellville, 7535,
South Africa

Abstract
This article proves a stability theorem for the disease-free equilibrium of a stochastic
differential equations model of malaria disease dynamics. The theorem is formulated
in terms of an invariant which is similar to the basic reproduction number of a related
deterministic model. Compared to the deterministic model, stability of the
disease-free equilibrium holds more generally for the stochastic model. The optimal
control theory is applied to the stochastic model, revealing some important new
insights. Theoretical results are illustrated by way of simulations.

Mathematics Subject Classification: 92D30; 34K20; 34H05

Keywords: SDE model; Basic reproduction number; Exponential stability; Malaria;
Elimination

1 Introduction
Approximately half of the world’s population is at risk of malaria. A considerable amount of
scientific effort has been directed to the fight against malaria. This includes the construc-
tion, analysis and application of mathematical models. Some of these models capture the
effects of climate variables on malaria transmission, e.g., [1, 3, 9]. Some authors have in-
troduced randomness into ordinary differential equations (ODE) compartmental models
to reflect a multitude of uncertainties. Such stochastic differential equations (SDE) mod-
els have already been proposed for various diseases, and in particular for vector-borne
diseases [8, 12, 18, 20].

We propose an SDE model for the population dynamics of a disease such as malaria or
dengue fever. The underlying deterministic model of the present paper is the same as that
in [18, 20] and is also similar to that of [12]. However, the stochastic perturbation of the
present paper differs from those in both [18] and [12]. Also, the methodologies are quite
different, both on the mathematical analysis and the simulation sides. The new model
allows for an elimination theorem, that is, a stability theorem for the disease-free equilib-
rium, which takes a form comparable to its counterpart in the underlying deterministic
model. The elimination theorem takes a simpler and more explicit form than the stability
theorem of [20]. Ultimately, the stochastic perturbation in this new model permits stabil-
ity of the disease-free equilibrium beyond the limitations of the underlying deterministic
model, similar, for example, to [5, 19, 21].

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-023-03791-3
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-023-03791-3&domain=pdf
https://orcid.org/0000-0003-1304-0282
mailto:pwitbooi@uwc.ac.za
http://creativecommons.org/licenses/by/4.0/


Witbooi et al. Advances in Continuous and Discrete Models         (2023) 2023:45 Page 2 of 16

We also perform optimal control analysis. Ishikawa, see [7], seems to be the first author
to have worked on optimal control in SDE models of infectious disease dynamics. Other
papers in this regard are [2, 11, 13, 22] etc. There are numerous papers in the literature on
control in deterministic models of malaria dynamics, such as [3, 6, 10, 15]. In the current
paper, we solve a stochastic control problem. Our control functions are linked to the use of
bednets, insecticides, and isolation of infected humans. Approximate numerical solutions
of the control problem are derived following a method similar to [22].

The remainder of this paper is organized as follows. Section 2 describes the malaria
model. In Sect. 3 we show the existence and uniqueness of a global positive solution of
the model. Section 4 presents an investigation of the asymptotic behavior of solutions to
the stochastic model around the trivial equilibrium point. In Sect. 5, we run simulations
to make future projections of the state of disease in the population and to illustrate the
long-term behavior of the model. Finally, in Sect. 6, we provide a few concluding remarks
and suggestions for future research.

2 The stochastic model of malaria
Stochasticity is introduced as follows. We assume having a complete filtered probability
space (�,F , {Ft}t≥0,P) with the filtration {Ft}t≥0 ⊂F satisfying the usual conditions (i.e.,
the filtration is right-continuous and F0 contains all the subsets having measure zero). As
part of the fixed notation throughout the paper, we shall consider a pair of independent
Wiener processes B1(t) and B2(t) on this probability space. We use the notation: for n ∈N,
R

n
+ = {x ∈R

n : xi > 0 for each i}.
We consider a stochastic malaria model based on the deterministic model in [16]. As in

[16], the host population at time t ≥ 0 is of size N(t) and is subdivided into three compart-
ments, and the vector disease population, of size M(t), is subdivided into two compart-
ments. We ambiguously use the same symbol for a population class and for its magnitude.
The first compartment in the human population consists of those individuals who are un-
infected, but susceptible to infection with the pathogen in point. We denote this class by
S(t). The second class, denoted by I(t), consists of all the individuals who are infected with
the pathogen. The third class consists of all the human individuals who recovered from
the infection and have temporary immunity against the pathogen. This class of individuals
is denoted by R(t). The vector compartment is subdivided into two classes: susceptible V
class and infected J class.

The human birth rate is denoted by A. There is no vertical transmission and all the
newborns are susceptible. The per capita death rate (excluding death due to malaria) is
assumed to be the same constant μ for all humans, and the rate of mortalities due to
malaria is denoted by δ. The mosquito population has B and θ as the natural birth rate and
per capita mortality rate, respectively. We assume that a susceptible individual bitten by
an infected mosquito becomes infectious once successfully infected where α and β are the
transmission probabilities from humans to mosquitoes and from mosquitoes to humans,
respectively. The rate of infection of the human host in class S by infected vectors in J is
dependent on the total number of humans available per infected vector. The per capita
rate of transfer from the I-class to the R-class is k. The people who are immune lose their
immunity at a (per capita) rate γ . The above description is depicted in the flow diagram
in Fig. 1.
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Figure 1 Flow diagram of the deterministic version of the model

After introducing stochastic perturbations, with v1 and v2 being non-negative constants,
we obtain the following system of SDEs.

dS(t) =
[
A – βS(t)J(t) – μS(t) + γ R(t)

]
dt,

dI(t) =
[
βS(t)J(t) – μ1I(t)

]
dt + v1I(t) dB1(t),

dR(t) =
[
kI(t) – (μ + γ )R(t)

]
dt, (1)

dV (t) =
[
B – αV (t)I(t) – θV (t)

]
dt,

dJ(t) =
[
αV (t)I(t) – θ J(t)

]
dt + v2J(t) dB2(t),

where μ1 = μ + k + δ.
Stochasticity in real world phenomena is always prevalent. In modeling with ordinary

differential equations, one can address what is arguably the most important effect of
stochasticity. In some disease models, the authors consider the mortality rates as being
affected most significantly, see [12, 13] for instance. In other models, such as [5, 19], it
is the transmission rate of the disease that is regarded as most important with regard to
random variations. In the current work, we consider the most serious source of the ran-
domness to be the disease itself. Hence we introduce the perturbations as being linked to
the infected classes of both the host population and the vector population, which leads to
the SDE system above.

A solution of this system over a time interval D is a set of points

X(t) =
(
S(t), I(t), R(t), V (t), J(t)

)
, t ∈ D.

The stochastic model has a unique equilibrium point X∗, the disease-free equilibrium,

X∗ =
(

A
μ

, 0, 0,
B
θ

, 0
)

.

In the special case for which v1 = 0 = v2, we refer to the system (1) as the underlying deter-
ministic model.

Existence and uniqueness of positive solutions are covered by [18]. More precisely, we
deduce the following results from [18].
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Proposition 2.1 Consider a number t1 > 0. Suppose that for every 0 < t < t1, we have S, I ,
R, V , J being positive. Then

(a) If S(0) + R(0) < A
μ

, then S(t) + R(t) < A
μ

for all 0 < t ≤ t1.
(b) If V (0) < B

θ
, then V (t) < B

μ
for all 0 < t ≤ t1.

Theorem 2.2 For any given initial value X(0) ∈ R
5
+, there exist a unique positive solution

X(t) of (1) on t ≥ 0 such that the solution remains in R
5
+ with probability 1, namely X(t) ∈

R
5
+ for all t ≥ 0 almost surely.

3 Stability of the disease-free equilibrium
The underlying deterministic model is the same as in the model [16]. The basic reproduc-
tion number, R0, of the underlying deterministic model is an indicator of local asymptotic
stability of the disease-free equilibrium. It was calculated in [16] as

R0 =

√
αβAB
θ2μμ1

.

As an indicator of stability of the disease-free equilibrium of the stochastic model (1), we
introduce an analogous invariant, which we denote by R, which is of a form similar to R0,
and as the intensities of the perturbations tend to zero, then R tends to R0. In Item 3.1
below, we briefly introduce a constant that appears in the formulation of R. Similar tech-
niques appear in [17, 19], and [21].

Item 3.1 A function h(x).
Let v1 and v2 be the perturbation intensities of model (1). We introduce a function h

h : (0, 1] → R; x �→ 1
2x

[
v2

1x2 + v2
2(1 – x)2].

Then h is continuous. If v1 > 0 or v2 > 0, then h(x) > 0 for all x ∈ (0, 1]. If v1 > 0, then:

lim
x→0+

h(x) = +∞.

Thus h has an absolute minimum h∗ and h∗ > 0. We find that indeed h has such minimum
value, at x = x∗ with

x∗ =

√
v2

2
v2

1 + v2
2

,

and then we write: h(x∗) = h∗.

The elimination theorem is formulated in terms of the following indicator:

R =

√
αβAB

θ2μ(μ1 + h∗)
. (2)

For stochastic systems there are many different versions of the concept of stability and
very sophisticated methods of stability analysis, see [14]. In the current paper we focus on
almost sure exponential stability, which is also studied in [19].
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Remark 3.2 Let us fix a positive constant q. We define the following stochastic processes
{u(t)}t≥0 and {z(t)}t≥0:

u(t) = I(t) + qJ(t).

By Theorem 2.2, the following statement holds:

(a.s.), u(t) > 0 for all t > 0.

Thus, if u(t) > 0 for all t > 0, then we define

z(t) = ln u(t).

Following a similar methodology as in [19] to prove stability of the disease-free equilib-
rium, we note the following.

By the Itô formula, the stochastic process {z(X(t))}t≥0 can be presented as:

z
(
X(t)

)
= z

(
X(0)

)
+

∫ t

w=0
Lz

(
X(w)

)
dw + M1(t) + M2(t),

where M1(t) and M1(t) are the Itô integrals

M1(t) =
∫ t

0

1
u(w)

v1I(w) dB1(w) and M2(t) =
∫ t

0

q
u(w)

v2J(w) dB2(w).

Since |I(w)/u(w)| ≤ 1 and |qJ(w)/u(w)| ≤ 1 (bounded), by application of the strong law of
large numbers for local martingales, we can deduce that

lim
t→∞

1
t

M1(t) = 0 (a.s.) and lim
t→∞

1
t

M2(t) = 0.

Therefore it follows that

lim sup
t→∞

1
t

z
(
X(t)

)
= lim sup

t→∞
1
t

∫ t

0
Lz

(
X(w)

)
dw (a.s.).

Remark 3.3 From the above, in order to prove that the stochastic process {u(t)}t≥0 con-
verges exponentially to 0 (a.s.), it suffices to prove that

lim sup
t→∞

1
t

∫ t

0
Lz

(
X(w)

)
dw < 0 (a.s.).

We can calculate Lz(t) as

Lz(t) =
1

u(t)
[
βS(t)J(t) – μ1I(t)

]
+

q
u(t)

[
αV (t)I(t) – θ J(t)

]
– E(t),

where E(t) is given by

E(t) =
1

2u2(t)
((

v1I(t)
)2 +

(
qv2J(t)

)2).
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Note that for every t > 0, I(t)/u(t) + qJ(t)/u(t) = 1 and thus, qJ(t)/u(t) = 1 – I(t)/u(t). There-
fore we can write

E(t) =
1

2u2(t)
((

v1I(t)
)2 +

(
qv2J(t)

)2) (3)

=
1
2

[
(v1)2

(
I(t)
u(t)

)2

+ (v2)2
(

q
J(t)
u(t)

)2]

=
1
2

[
(v1)2

(
I(t)
u(t)

)2

+ (v2)2
(

1 –
I(t)
u(t)

)2]

=
I(t)
u(t)

h
(

I(t)
u(t)

)
.

In particular then

E(t) ≥ h∗ I(t)
u(t)

, i.e., –E(t) ≤ –h∗ I(t)
u(t)

.

Now we obtain the inequality:

Lz
(
X(t)

)
=

I(t)
u(t)

[
qαV (t) – μ1

]
+

J(t)
u(t)

[
βS(t) – qθ

]
– E(t)

≤ I(t)
u(t)

[
qαB
θ

– μ1

]
+

J(t)
u(t)

[
βA
μ

– qθ

]
– h∗ I(t)

u(t)

=
I(t)
u(t)

[
qαB
θ

–
(
μ1 + h∗)

]
+

J(t)
u(t)

[
βA
μ

– qθ

]
.

We are interested in lim supt→∞ z(t) and we introduce the necessary notation for this anal-
ysis. For a stochastic process {x(t)}t≥0, we write

〈x〉t =
1
t

∫ t

0
x(s) ds.

We note that for every w ∈ � there exists an unbounded increasing sequence of positive
numbers (tn) with the property that limn→∞ Lz(tn) = lim supt→∞ Lz(t), and such that the
following sequences are convergent:

〈I/u〉tn , 〈J/u〉tn .

The latter two limits will be denoted by i, j respectively, and we write

� = lim sup
t→∞

〈Lz〉t .

We note that these values above depend on q. Now lim supt→∞〈Lz〉t can be seen to satisfy
the inequality

� ≤ i
[

qαB
θ

–
(
μ1 + h∗)

]
+ j

[
βA
μ

– qθ

]
. (4)

Theorem 3.4 If R < 1, then I(t) and J(t) converges exponentially to 0 (a.s.).
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Proof Let us assume that R < 1. The condition R < 1 is equivalent to the inequality

βA
μθ

(
αB
θ

)
–

(
μ1 + h∗) < 0.

We can find a number ε such that 0 < ε < 1 and

(
βA
μθ

+ ε

)(
αB
θ

)
–

(
μ1 + h∗) < 0. (5)

Now let q be given by

q =
βA
μθ

+ ε.

For the given value of q, we now consider u(t) and z(t). To prove our theorem, it suffices to
prove that u(t) converges exponentially to zero (a.s.). Thus by Remark 3.3, it is sufficient
to prove that � < 0. We write the inequality (4) as

� ≤ Q1i + Q2j,

with

Q1 =
qαB
θ

–
(
μ1 + h∗) =

(
μ1 + h∗)[R – 1] < 0,

and

Q2 =
βA
μ

– qθ = –εθ < 0.

The coefficients of i and j on the right-hand side of the inequality are negative and con-
stant. Note that

i + qj = 1.

Therefore at least one of the quantities i or j must be non-zero. Thus,

lim sup
t→∞

< Lz >t< 0 (a.s.)

and the proof is complete. �

Remark 3.5 By Theorem 3.4, we have that if R < 1, then starting from any initial value, I(t)
and J(t) converge exponentially to 0. Therefore the theorem shows that for parameter val-
ues with R0 slightly bigger than 1, stability of the disease-free equilibrium (i.e., elimination
of the disease) is enhanced by the stochastic perturbations.

The proof of the following theorem, that supplements Theorem 3.4, goes along similar
arguments as the proof of [21, Theorem 4.4(b)].
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Theorem 3.6 If I(t) and J(t) converges to 0 (a.s.), then limt→∞ X(t) = X∗ almost surely.

Proof Let �1 be the subset of all paths ω in � for which both I(t,ω) and J(t,ω) converge
to 0. In the rest of the proof, we assume working along some path in �1, which is arbitrarily
chosen, but we suppress the path for simplicity of notation.

• We prove by contradiction that R(t) converges to 0 (a.s.). Suppose that for a given
sample path we have:

r := lim sup
t→∞

R(t) > 0. (6)

Since I(t) converges to 0, there exists t0 > 0 such that whenever t ≥ t0, then

I(t) <
r(μ + γ )

2k
(a.s.).

Consider any t1 > t0. If R(t1) ≥ r/2, then

R′(t1) = kI(t1) – (μ + γ )R(t1) ≤ k
(

r(μ + γ )
2k

)
– (μ + γ )

r
2

= 0.

In particular, if for some t1 > t0 we have R(t1) ≥ r/2, then R(t) ≤ R(t1) for all t > t1. Then
it follows that in order that lim supt→∞ R(t) = r, we must have that R(t) ≥ r for all t > t0.
This means (with I(t) converging to 0) that eventually R′(t) ≤ 0. Thus, over some interval
[t2,∞) the function R is monotone. Then the bounded function R is also convergent (to
r), and also R′(t) converges to 0. Since R′(t) converges to 0, it follows that r = 0, and this is
a contradiction. This completes the proof that R(t) converges to 0 (a.s.).

• We now prove by contradiction that S(t) converges to A/μ (a.s.). Suppose to the con-
trary that (for a given sample path in �1) we have:

z0 := lim inf
t→∞ S(t) < A/μ. (7)

Now consider any z1 ∈ (z0, A/μ). In particular then, A – μz1 > 0. Since both J(t) and R(t)
are convergent to 0, and S(t) is bounded, there exists t0 > 0 such that whenever t ≥ t0, then

βS(t)J(t) – γ R(t) < A – μz1.

Consider any t1 > t0. If S(t1) ≤ z1, then

S′(t1) = A – μS(t1) –
(
βS(t1)J(t1) – γ R(t)

)
> A – μz1 – (A – μz1) = 0.

In particular, if for some t1 > t0 we have S(t1) > z1, then S(t) ≥ z1 for all t > t1. Since z1 can
be chosen arbitrarily close to z0, we can in fact deduce that S(t) actually converges to z0.
Feeding this limit into the expression for S′(t) we find that eventually S′(t) is consistently
positive. With S′(t) bounded above, it means that lim S′(t) = 0. This means that r = A/μ,
which is a contradiction. Thus we have proved that lim S′(t) = 0.

• Similarly as we proved convergence of S(t), we can prove that V (t) converges to B/θ
(a.s.). We omit the detail. �
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4 The stochastic optimal control problem
In this section we formulate the stochastic optimization problem and describe its solution.
Control functions u(t) = (u1(t), u2(t), u3(t)) are introduced into the model (1). For fixed
constants w1, w2, and w3, we assume that

0 < ui < wi for each i ∈ {1, 2, 3}.

The control functions are: u1 which represents the extent to which bednets are used, u2

indicates the isolation of infected human beings, and u3 measures the increase in the mor-
tality rate of vectors due to indoor residual spraying (IRS). We assume that the death due
to IRS affects mostly the infected vectors, while the susceptible vectors are essentially un-
affected. The resulting set of equations takes the form:

dS(t) =
[
A – β

(
1 – u1(t)

)
S(t)J(t) – μS(t) + γ R(t)

]
dt,

dI(t) =
[
β
(
1 – u1(t)

)
S(t)J(t) – μ1I(t)

]
dt + v1I(t) dB1(t),

dR(t) =
[
kI(t) – (μ + γ )R(t)

]
dt, (8)

dV (t) =
[
B – αV (t)I(t)

(
1 – u2(t)

)
– θV (t)

]
dt,

dJ(t) =
[
αV (t)I(t)

(
1 – u2(t)

)
– θ

(
1 + u3(t)

)
J(t)

]
dt + v2J(t) dB2(t),

where μ1 = μ + k + δ.

Control Problem 4.1 Fix the number T > 0. For t ∈ [0, T] and with zt ∈ R
5 being a pos-

sible state of the system at time t, we write

J(t, zt ; u) = Et,zt

[∫ T

0

(
c1u2

1(s) + c2u2
2(s) + c3u2

3(s) + c4I(s)
)

ds
]

.

Here the expectation is on the condition that at time t, the state of the system is zt . Our
objective is to find a control strategy u∗(t) which minimizes the expected value of the
objective functional (for fixed z0),

J(0, z0; u).

The class of admissible control laws is

A =
{

u(·) : u ≥ 0, u is bounded and adapted, and such that u ≥ 0 a.s.
}

. (9)

We define the value function as

U(t, x) = inf
u(·)∈A

J(t, x; u) = J
(
t, x; u∗).

A solution to the optimal control problem stated in Problem 4.1 is obtained via the dy-
namic programming approach. Let us write the system (7) as

dS(t) = f1(X) dt,
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dI(t) = f2(X) dt + v1I(t) dB1(t),

dR(t) = f3(X) dt, (10)

dV (t) = f4(X) dt,

dJ(t) = f5(X) dt + v2J(t) dB2(t).

We write down LU(t):

LU(t) = f1(t)US(t) + f2(t)UI(t) + f3(t)UR(t) + f4(t)UV (t) + f3(t)UJ (t)

+
1
2
[(

v1I(t)
)2UII(t) + 2v1v2UIJ (t) + (v2J)2UJJ (t)

]
.

Then by applying the Hamilton–Jacobi–Bellmann theory (see, for instance, [4]) we must
minimize:

inf
u∈A

[
c1u2

1 + c2u2
2 + c3u2

3 + c4I(s) + LU(t)
]
.

This entails partial differentiation, with respect to the control variables, of the given ex-
pression. If we make these derivatives zero, we obtain the following equations.

2c1u1(t) + βS(t)J(t)
[
US(t) + UI(t)

]
= 0,

2c2u2(t) + αV (t)I(t)
[
UV (t) – UJ (t)

]
= 0, (11)

2c3u3(t) – θ J(t)UJ (t) = 0.

This leads to an optimal control of the form

u∗
1(t) = max

{
0, min

[
w1,

1
2c1

βS(t)J(t)
[
UI(t) – US(t)

]]}
,

u∗
2(t) = max

{
0, min

[
w2,

1
2c2

αV (t)I(t)
[
UJ (t) – UV (t)

]
]}

,

u∗
3(t) = max

{
0, min

[
w3,

1
2c3

θ J(t)UJ (t)
]}

.

Numerical solution of the optimal system is rather complex. We opt to follow the same
approximation method as was done in [2, 13, 22]. For this purpose we require the solution
of the deterministic optimal control problem, which emerges as a special case of Prob-
lem 4.1. For the deterministic optimal control problem, the co-state variables satisfy the
following system of ODEs:

λ′
1(t) =

(
β
(
1 – u1(t)

)
J(t) + μ

)
λ1(t) – β

(
1 – u1(t)

)
J(t)λ2(t),

λ′
2(t) = –c4 + μ1λ2(t) – kλ3(t) + αV (t)

(
1 – u1(t)

)
λ4(t) – αV (t)

(
1 – u1(t)

)
λ5(t),

λ′
3(t) = γ λ1(t) + (μ + γ )λ3(t),

λ′
4(t) =

(
αI(t)

(
1 – u2(t)

)
+ θ

)
λ4(t) – αI(t)

(
1 – u2(t)

)
λ5(t),

λ′
5(t) = β

(
1 – u1(t)

)
S(t)λ1(t) – β

(
1 – u1(t)

)
S(t)λ2(t) + θ

(
1 + u3(t)

)
λ5(t).
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The solution u∗
d of the deterministic optimal control problem takes the form

u∗
d1(t) = max

{
0, min

[
w1,

1
2c1

βS(t)J(t)
[
λ2(t) – λ1(t)

]
]}

,

u∗
d2(t) = max

{
0, min

[
w2,

1
2c2

αV (t)I(t)
[
λ5(t) – λ4(t)

]]}
,

u∗
d3(t) = max

{
0, min

[
w3,

1
2c3

θ J(t)λ5(t)
]}

,

with λ(t) being the co-state variable.
The heuristic argument is that for sufficiently small values of the perturbation param-

eters, we can approximate the first-order partial derivatives of U by the corresponding
coordinate of λ. We numerically solve for λ using a fourth-order Runge–Kutta scheme.

5 Numerical simulations
We apply this model to malaria disease over a population, which we assume to have a
population of 105 when malaria-free. In the simulations, we use parameter values from
Table 1 or minor modifications of it. These values are sourced from [20] and it applies to
malaria disease. The values of the perturbation parameters v1 and v2 are specified at each
graph. We work with the following nominally chosen initial values:

S(0) = 84,000, I(0) = 4000, R(0) = 12,000,

V (0) = 250,000, J(0) = 50,000.

5.1 Long-term behavior
To illustrate the stability theorem, we make a change in the values of α and β , choosing
α = 6.375 × 10–7 and β = 1.275 × 10–8, and then we calculate the value of the basic repro-
duction number as R0 = 1.022, while R = 0.9276 < 1 for v1 = v2 = 0.05. The deterministic
model will have the disease-free equilibrium being unstable. Theorem 3.6, on the other
hand, guarantees the almost sure stability of the disease-free equilibrium of the stochastic
model. The graph in Fig. 2 seems to confirm the finding of Theorem 3.6. In Fig. 2 we have
the comparison of the mean I-path of 1000 sample paths of the stochastic model com-
pared with the deterministic I-path. Figure 3 shows the trajectories of the same variables,
but they are run with different initial conditions and a longer time horizon.

Table 1 Numerical values of parameters

Parameter Description Numerical value

μ Mortality rate for humans, excluding deaths directly due to malaria 0.017
365 per day

δ The rate of human deaths due to malaria 0.042
180 per day

θ Mortality rate for (vector) mosquitos 0.1 per day
A Total human birth rate 105μ
B Total birth rate of vector mosquitos 3θ × 105

β Transmission probability from mosquitoes to humans 1.5× 10–7

α Transmission probability from humans to mosquitoes 7.5× 10–8

k Recovery rate 1
180 per day

h Rate of loss of temporary immunity 1
2×365 per day
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Figure 2 The mean I-path of 1000 sample paths of the stochastic model compared with the deterministic
I-path, [v1 = v2 = 0.05]

Figure 3 The mean I-path of 1000 sample paths of the stochastic model compared with the deterministic
I-path, [v1 = v2 = 0.05]

5.2 Optimal control
We present some simulations on stochastic optimal controls. Approximate solutions are
obtained in a similar way as in [22] and subsequently in [2, 13]. This amounts to appropri-
ate utilization of formulas that solve the deterministic control problem are used to obtain
approximate solutions for the stochastic control problem.

In Figs. 4–7, we show these stochastic optimal controls corresponding to a single path
ω0 of the process {B1, B2}t≥1. All three controls are shown in Fig. 4 and then compared
with their deterministic counterparts in Figs. 4–7. In Fig. 4, it is observed that initially and
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Figure 4 The control functions of the stochastic model [v1 = v2 = 0.005] for a sample path ω0 of the
stochastic process {B1,B2}t≥1

Figure 5 Comparison of the optimal control u1 for the sample path ω0 of the process {B1,B2}t≥1, with the
corresponding deterministic control

for some time, all controls are kept at their maximum values. As a result, the prevalence
of malaria is reduced relatively fast (as can be seen in Fig. 8). In comparison with the
deterministic case, a significant but not drastic difference can be seen. In Fig. 8, we notice
that with optimal control on both the stochastic model and the deterministic model, the
I-classes in the two cases follow the same trajectory. However, we stress here that optimal
control must be maintained on both sides. Therefore, the control manager in particular
must monitor the system in order to apply the stochastic control accurately.
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Figure 6 Comparison of the optimal control function u2 for the sample path ω0, with its deterministic
counterpart

Figure 7 Comparison of the optimal control function u3 for the sample path ω0, with its deterministic
counterpart

6 Conclusions
Our analysis of the stochastic model produced a threshold for stability of the disease-free
equilibrium, which is similar to the basic reproduction number. Stability of the disease-
free equilibrium of our model is described in terms of invariant R, which is not higher
than R0. Our stability theorem has a simple form consistent with the deterministic theory.
Since exponential stability is almost certain as long as R < 1, it follows that the stochastic
perturbation enhances the stability of the disease-free equilibrium. This translates into a
better chance of the disease being eliminated from the population. Simulations suggest (as
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Figure 8 The trajectory of the I-class under optimal control compared with the mean of 1000 runs of the
stochastic optimally controlled I

expected) that in general, the expectation of I(t)-values in the stochastic model is lower
than the corresponding I(t)-values in the underlying deterministic model.

The control study revealed some very useful insights too. We have observed that for
optimal control, it is important that the manager of the operation, must constantly mon-
itor the dynamical system in order to apply the control accurately, taking into account
disturbances on the system. Even for the modeler who prefers to work with deterministic
models, it is good to know that minor stochastic perturbations will not lead to disastrous
deviations from the deterministic model. In particular, if a system experiences perturba-
tions in reality, then surveillance is important for optimal adjustment of the controls in
response to the perturbations.

The cost function that was used in the control problem was chosen just for explorative
purposes. If the function can be chosen more realistically then the results obtained in this
work become valuable for public health purposes.
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