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Abstract
In this paper, a stochastic discrete fractional-order chaotic system with short memory
is proposed, which possesses two equilibrium points. With the help of the Lyapunov
function theory, some sufficient conditions for the stability in probability of the two
equilibrium points are given. Secondly, the effects of fractional order and memory
steps on the stability of the system are discussed. Finally, the path dynamical behavior
of the system is investigated using numerical methods such as Lyapunov exponents,
bifurcation diagram, phase diagram, and 0–1 test. The numerical simulation results
validate the findings.
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1 Introduction
Fractional-order mathematical models are often used as powerful tools to simulate real-
world problems with memory effects, see [1–8] and so on. Recently, Wu, Baleanu, and
Zeng [9] proposed a discrete fractional-order sine map and a discrete fractional-order
standard map, and discussed their chaotic dynamics. Then Wu and Baleanu [10] studied
delayed logistic maps that exist chaos. Later, Shukla and Sharma [11] extended a discrete
fractional-order chaotic map to a fractional-order generalized hyperchaotic setting, which
also has chaotic and hyperchaotic phenomenon. Moreover, Wu, Çankaya, and Banerjee
[12] constructed a fractional-order q-deformed chaotic map employing a weight function
approach. Furthermore, Khennaoui, Ouannas, Bendoukha, Grassi, Lozi, and Pham inves-
tigated chaos, stabilization, and synchronization in some fractional-order discrete-time
systems [13], while Ran [14] studied chaos in a two-dimensional fractional-order chaotic
map. Other studies on these topics can be seen in [15–20]and their references.

In addition, on the application of discrete fractional-order chaotic systems, Wu et al.
[21] gave a review including some examples, for instance, an image encryption technique
based on fractional-order chaotic time series. And Liu and Xia [22] proposed a novel two-
dimensional fractional-order discrete chaotic map and studied image encryption by using
the system. More applications of fractional-order systems have been described in [23, 24].

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-023-03786-0
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-023-03786-0&domain=pdf
mailto:yonghuizhou@gznu.edu.cn
http://creativecommons.org/licenses/by/4.0/


Ran et al. Advances in Continuous and Discrete Models         (2023) 2023:40 Page 2 of 16

In fact, in modeling some practical problems, we only need short-term memory rather
than full historical information. Therefore, the topic of fractional-order systems with
short-term memory has attracted more and more attention. Dzielinski and Sierociuk [25]
used a fractional-order operator to establish a short-term memory system and analyzed
its local controllability. Later, Mozyrska and Pawłuszewiz [26] studied the stability of a dis-
crete fractional-order state-space system in the Grünwald–Letnikov difference operator
sense. In [27], Coll, Herrero, Ginestar, and Sánchez used a discrete fractional-order oper-
ator involving short-term memory to build an infectious disease system and obtained sta-
bility conditions of its equilibrium points. Very recently, Atici, Chang, and Jonnalagadda
systematically summarized theoretical results for some fractional-order systems with long
or short memory in [28].

However, systems in the world will inevitably be affected by external interference. In this
paper, our purpose is to extend a deterministic discrete fractional-order chaotic system to
a stochastic setting, which may find applications in economics, biology, and other fields.
To explore the influence of uncertainty and memory, stability, and dynamical behavior are
investigated using Lyapunov function theory and numerical methods.

This paper is structured as follows. Section 2 introduces some preliminaries. In Sect. 3,
a stochastic fractional-order chaotic system is proposed. In Sect. 4, the stability of equilib-
rium points of the system is studied, and some numerical examples are given. In Sect. 5, the
effects of fractional order and memory steps on the stability of the system are discussed.
In Sect. 6, some path dynamical behaviors of the system are illustrated. Conclusions are
summarized in Sect. 7.

2 Preliminary
Firstly, the definition of fractional-order Grünwald–Letnikov difference operator is pre-
sented below; see [25, 26].

Definition 1 For a function x on Z = {0, 1, . . .}, the α-order Grünwald–Letnikov difference
operator �α is defined as

�αxt =
1
lα

t∑

j=0

(–1)j
(

α

j

)
xt–jl, (1)

where l ∈ (0, +∞) is a sampling period, α ∈ (0, 1] denotes a fractional order, and the bino-
mial coefficient

(
α

j
)

is computed by

(
α

j

)
=

⎧
⎨

⎩
1 for j = 0,
α(α–1)···(α–j+1)

j! for j = 1, 2, . . . , t.
(2)

Now as in [29–31], a stochastic difference system with state variable xi ∈ Rn, i ∈ Z is
introduced, which satisfies the equation

xi+1 = F(i, x–h, . . . , xi) +
i∑

j=0

G(i, j, x–h, . . . , xj)ξj, (3)

where h is a given non-negative integral number, the initial condition xi = ϕi for i ∈ Zh =
{–h, . . . , 0}, F : Z × S → Rn, G : Z × Z × S → Rn (S is a space of sequences with elements
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in Rn), and ξj, j ∈ Z is a sequence of Fj-adapted random variables on a filtered probability
space (�, {Fj, j = 0, 1, 2, . . .},F, P). Below are some stability concepts for the trivial solution,
if it exists.

Definition 2 The trivial solution of the system (3) is called mean square stable if for each
ε > 0 there exists a δ > 0 such that E|xi|2 < ε, i ∈ Z for any initial condition ϕ = (ϕ–h, . . . ,ϕ0)
satisfying ‖ϕ‖2 = supi∈Zh

E|ϕi|2 < δ; and it is called asymptotically mean square stable if
limi→∞ E|xi|2 = 0.

Definition 3 The trivial solution of the system (3) is called stable in probability if for any
ε > 0 and ε1 > 0 there exists a δ > 0 such that

P
{

sup
i∈Z

|xi| > ε|F0

}
< ε1, (4)

for any initial condition ϕ = (ϕ–h, . . . ,ϕ0) satisfying

P
{

max
j∈Zh

|ϕj| < δ
}

= 1. (5)

Clearly, asymptotically mean square stable implies both mean square stable and stable
in probability. The following two important theorems can be found in [29–31].

Theorem 1 If there exists a non-negative functional Vi = V (i, x–h, . . . , xi) and two positive
numbers c1, c2 such that the inequalities

EV (0,ϕ–h, . . . ,ϕ0) ≤ c1‖ϕ‖2,

E�Vi ≤ –c2E|xi|2, i ∈ Z, (6)

hold, then the trivial solution of (3) is asymptotically mean square stable.

Theorem 2 If there exists a non-negative functional V1i = V (i, x–h, . . . , xi), which satisfies
the first condition of (6) and the inequalities

E�V1i ≤ aE|xi|2 +
i∑

k=–h

AikE|xk|2, i ∈ Z, Aik ≥ 0,

a + b < 0, b = sup
i∈Z

∞∑

j=i

Aji,

(7)

then the trivial solution of (3) is asymptotically mean square stable.

3 Model
It is well known that a classical one-dimensional discrete logistic chaotic model is defined
by

xi+1 = uxi(1 – xi), (8)
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where u ∈ R is a parameter. Now taking the Grünwald–Letnikov difference operator �α ,
we can obtain

�αxi+1 = uxi(1 – xi) – xi. (9)

For simplicity, let sampling period be l = 1, then the above fractional-order equation can
be written as

xi+1 = (u – 1 + α)xi – ux2
i –

i+1∑

j=2

(–1)j
(

α

j

)
xi–j+1. (10)

An extension of the above deterministic equation in a stochastic environment can thus be
constructed as

xi+1 = (u – 1 + α)xi – ux2
i –

i+1∑

j=2

(–1)j
(

α

j

)
xi–j+1 + σ

(
xi – x∗)ξi+1, (11)

where x∗ is an equilibrium point of (10) (of course if and only if it is an equilibrium point
of (11)), σ is a known constant, and ξi, i ∈ Z is a sequence of mutually independent Fi-
adapted normal random variables with mean Eξi = 0 and variance Eξ 2

i = 1.
In this paper, similar to [29–31], we focus on a stochastic system with short memory or

with truncation operator of k steps, that is, for i ∈ Z and k = 2, . . . , i + 1,

xi+1 = (u – 1 + α)xi – ux2
i –

k∑

j=2

(–1)j
(

α

j

)
xi–j+1 + σ

(
xi – x∗)ξi+1. (12)

The following proposition about equilibrium points for the above system is obvious, the
proof is omitted.

Proposition 3 The model (12) has two equilibrium points:

x∗
1 = 0, u ∈ R; x∗

2 =
u – 1 – Ak

u
, u 	= 0,

where Ak =
∑k

j=0(–1)j(α

j
)
.

4 Stability
Now, for k = 1, 2, . . . , let us define a norm space Hk = {x|x = xi : Zk ∪ Z → R,
supi∈Zk∪Z E|xi|2 < ∞}, where Zk = {–(k – 1), . . . , 0}. The stability of the two equilibrium
points in Proposition 3 will be investigated later.

4.1 Stability of equilibrium points
Let us consider the equilibrium point x∗ = 0 first. By putting yi = xi – x∗, the model (12)
reduces to

yi+1 = (u – 1 + α)yi – uy2
i –

k∑

j=2

(–1)j
(

α

j

)
yi–j+1 + σyiξi+1. (13)
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It is shown that the investigation of stability in probability of the above nonlinear
stochastic difference equation can be reduced to the investigation of asymptotically mean
square stability of its linear part:

yi+1 = (u – 1 + α)yi –
k∑

j=2

(–1)j
(

α

j

)
yi–j+1 + σyiξi+1, (14)

and applying the Lyapunov function method to study the stability of the trivial solution
will be very useful [29].

Obviously, there is an auxiliary difference equation to the above stochastic system (14):

zi+1 =
k∑

j=1

bjzi–j+1, (15)

where b1 = u – 1 + α and bj = (–1)j+1(α

j
)

for j ≥ 2. Taking the vector z(i) = (zi–k+1, . . . , zi)′,
we rewrite (15) in a matrix form

z(i + 1) = Bz(i), (16)

where

B =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 1
bk bk–1 bk–2 · · · b2 b1

⎞

⎟⎟⎟⎟⎟⎟⎠
. (17)

Then some sufficient conditions to guarantee the stability of equilibrium can be stated
below.

Theorem 4 Assume that a positive semi-definite symmetric matrix D = (di,j)k×k with dk,k >
0 and dk,kσ

2 – 1 < 0 is a solution to the matrix equation

B′DB – D = –M, (18)

where

M =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0
0 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0
0 0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
. (19)

Then the trivial solution of (14) is asymptotically mean square stable, and the equilibrium
point x∗ = 0 of (12) is stable in probability.
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Proof By the assumption, a Lyapunov function of (16) can be constructed as

vi = z(i)′Dz(i). (20)

In fact, we have �vi = z(i + 1)′Dz(i + 1) – z(i)′Dz(i) = –z2
i ≤ 0.

Then a Lyapunov function of (14) is constructed as

Vi = V1i = y(i)′Dy(i),

where

y(i + 1) = By(i) + η(i) (21)

with y(i) = (yi–k+1, . . . , yi)′ and η(i) = (0, . . . ,σyiξi+1)′.
Then, we have

E�V1i = E
[
y(i + 1)′Dy(i + 1) – y(i)′Dy(i)

]

= E
[(

By(i) + η(i)
)′D

(
By(i) + η(i)

)
– y(i)′Dy(i)

]

= E
[
–y2

i + η(i)′Dη(i) + 2η(i)′DBy(i)
]

= –Ey2
i + E

[
η(i)′Dη(i)

]
+ E

[
η(i)′DAy(i)

]
+ E

[
y(i)′B′Dη(i)

]
.

(22)

Since

E
[
η(i)′Dη(i)

]
= E

[
dkkσ

2y2
i ξ

2
i+1

] ≤ dkkσ
2Ey2

i , (23)

E
[
η(i)′DBy(i)

]
= E

[
y(i)′B′Dη(i)

]
= 0, (24)

so, E�V1i ≤ (dkkσ
2 – 1)Ey2

i . Therefore, via Theorem 1, we obtain a sufficient condition of
asymptotically mean square stability dkkσ

2 – 1 < 0 for (14). According to Remark 7.9 in
[29], this condition is also a sufficient condition for the stability in probability of (12). The
proof is completed. �

Repeating the same procedure above, we can obtain the following theorem about the
constant equilibrium point x∗ = u–1–Ak

u , with its proof omitted.

Theorem 5 Assume that a positive semi-definite symmetric matrix D = (di,j)k×k with dk,k >
0 and dk,kσ

2 – 1 < 0 is a solution to the matrix equation

C′DC – D = –M, (25)

where M is the same matrix as in Theorem 4 and

C =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 1
ak ak–1 ak–2 · · · a2 a1

⎞

⎟⎟⎟⎟⎟⎟⎠
, (26)
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with a1 = 3u – 3 + α – 2Ak and aj = (–1)j+1(α

j
)

for j ≥ 2. Then the equilibrium point x∗ =
u–1–Ak

u of (12) is stable in probability.

4.2 Numerical examples
In this section we present simulations for model (12). Note that in the following three
examples we still use xi to denote the new variable after variable transformation.

Example 1 Consider the equilibrium point x∗ = 0. Let k = 2, then the system (12) can be
reduced as

xi+1 = (u – 1 + α)xi – ux2
i –

α(α – 1)
2

xi–1 + σxiξi+1. (27)

Then according to Theorem 4, the following result can be deduced.

Corollary 1 When

σ 2(2 + α2 – α)
(2 – α2 + α)[( 2+α2–α

2 )2 – (u – 1 + α)2]
< 1,

∣∣∣∣
α2 – α

2

∣∣∣∣ < 1 and

|u – 1 + α| <
2 + α2 – α

2
,

(28)

the zero equilibrium point of (27) is stable in probability, equivalently, the equilibrium point
x∗ = 0 of (12) with k = 2 is stable in probability.

Let α = 0.8, u = 0.3, and σ = 0.8, then it is easy to verify that this special case satisfies the
above conditions. The mean path along with the standard deviation (shaded area) [32] of
3×103 sample trajectories is presented in Fig. 1 and 500 sample trajectories are presented
in Fig. 2.

Example 2 Consider the equilibrium point x∗ = u–1–Ak
u . Let k = 2, then the system (12)

turns to be the equation

xi+1 = (3u – 3 + α – 2A2)xi – ux2
i –

α(α – 1)
2

xi–1 + σxiξi+1. (29)

From Theorem 5 follows the following result.

Corollary 2 When

σ 2(2 + α2 – α)
(2 – α2 + α)[( 2+α2–α

2 )2 – (3u – 3 + α – 2A2)2]
< 1,

∣∣∣∣
α2 – α

2

∣∣∣∣ < 1 and

|3u – 3 + α – 2A2| <
2 + α2 – α

2
,

(30)

the zero equilibrium point of (29) is stable in probability, equivalently, the equilibrium point
x∗ = u–1–A2

u of (12) with k = 2 is stable in probability.
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Figure 1 The mean along with standard deviation of 3× 103 sample trajectories of (27) with α = 0.8, u = 0.3,
σ = 0.8

Figure 2 The sample trajectories of (27) with α = 0.8, u = 0.3, σ = 0.8

Then the case with α = 0.8, u = 1, and σ = 0.6 satisfies the above conditions. The mean
path together with the standard deviation (shaded area) of 3 × 103 sample trajectories are
plotted in Fig. 3 and 500 sample trajectories are plotted in Fig. 4.

Example 3 Consider the equilibrium point x∗ = 0. Let k = 3, then the system (12) turns to
be the equation

xi+1 = (u – 1 + α)xi – ux2
i –

α(α – 1)
2

xi–1 +
α(α – 1)(α – 2)

6
xi–2 + σxiξi+1. (31)
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Figure 3 The mean along with standard deviation of 3× 103 sample trajectories of (29) with α = 0.8, u = 1,
σ = 0.6

Figure 4 The sample trajectories of (29) with α = 0.8, u = 1, σ = 0.6

By taking parameters α and u the same as those in Example 1, respectively, via (17), we
have

B =

⎛

⎜⎝
0 1 0
0 0 1

0.032 0.08 0.1

⎞

⎟⎠ . (32)
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Figure 5 The mean along with standard deviation of 3× 103 sample trajectories of (31) with α = 0.8, u = 0.3,
σ = 0.6

Then the matrix

D =

⎛

⎜⎝
0.1189 0.0487 0.0594
0.0487 0.1359 0.0695
0.0594 0.0695 1.1614

⎞

⎟⎠ (33)

solves the equation (18). So it follows from Theorem 4 that the following corollary holds.

Corollary 3 When σ 2 < 1
1.1614 , the zero equilibrium point of (31) is stable in probability,

equivalently, the equilibrium point x∗ = 0 of (12) with k = 3 is stable in probability.

Clearly, σ = 0.6 satisfies the above condition. The mean path together with the standard
deviation (shaded area) of 3×103 sample trajectories are displayed in Fig. 5 and 500 sample
trajectories are displayed in Fig. 6.

In view of the above discussion, we find that the stability of equilibrium points is de-
termined by the value of parameters σ , α, u, k, and the truncation steps k, and fractional
order α play important roles.

5 Effects of fractional order and memory steps on stability
In this section, we will use numerical method to study briefly effects of fractional order α

and memory steps k on the region of stability in the system (13).
Assume that α = 0.8, u = 0.3, and M is the same as that in Theorem 4. The stability

conditions are shown in Table 1 for memory steps k = 2 ∼ 5, respectively.
Assume that k = 2, u = 1, and M is the same as that in Theorem 4. The stability conditions

are shown in Table 2 for fractional order α = 0.2 ∼ 0.9, respectively.
As illustrated above, the stability zone appears to shrink as the number of memory steps

k rises, and the same is true for the fractional order α.
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Figure 6 The sample trajectories of (31) with α = 0.8, u = 0.3, σ = 0.6

Table 1 Stability condition with different values of k

memory steps k 2 3 4 5

stability condition σ 2 < 1
1.0185 σ 2 < 1

1.1614 σ 2 < 1
1.1680 σ 2 < 1

1.1720

Table 2 Stability condition with different values of α

fractional order α 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9

stability condition σ 2 < 1
1.0564 σ 2 < 1

1.1391 σ 2 < 1
1.2788 σ 2 < 1

1.5084
σ 2 < 1

1.8960 σ 2 < 1
2.6041 σ 2 < 1

4.1272 σ 2 < 1
8.9574

6 Dynamics
In this section, we will study path dynamics of the system (13) by means of numerical
methods, i.e., Lyapunov exponents, bifurcation diagram, and 0–1 test.

Consider a stochastic discrete-time dynamical system

Xi+1 = f (Xi, ξi), (34)

where Xi ∈ Rn is state variable, f : Rn → Rn is a vector function and ξi is a process. It follows
from linearization of (34) that

Xi+1 = J(Xi, ξi), = J(i)Xi, (35)

where J(Xi, ξi) is the Jacobian matrix of (34), which implies

Xi+1 = J(i) · · · J(1)J(0)X0. (36)

As a result, we can establish Lyapunov exponents of (34) using products of random ma-
trices. Next, we will study the path dynamics of the system (13) in the sense of probability.
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Figure 7 Bifurcation diagram of (13) versus u ∈ [–1, 0] with α = 0.1, σ = 0.01

Figure 8 Bifurcation diagram of (13) versus α ∈ (0, 1] with u = –0.8, σ = 0.01

Firstly, consider u as a bifurcation parameter. Fix k = 2, α = 0.1, and σ = 0.01 and take
the mean of 102 sample trajectories of the system (13), then we can obtain the bifurcation
diagram versus u ∈ [–1, 1] as shown in Fig. 7.

Next, similar to the above procedure, the bifurcation diagram versus α ∈ (0, 1] is shown
in Fig. 8, where k = 2, u = –0.8, and σ = 0.01.

Here a concrete example is taken to demonstrate periodic and chaotic dynamics in (13)
with k = 2. Let u = –0.8, σ = 0.01, then the time history diagrams and 0–1 test results for
α = 0.15 and α = 0.6 are shown in Fig. 9 and Fig. 10, respectively (the algorithm of 0–1
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Figure 9 Numerical results for u = –0.8, α = 0.15, and σ = 0.01. (a) Time history diagram, (b) K value, (c) p–s
plot

Figure 10 Numerical results for u = –0.8, α = 0.6, and σ = 0.01. (a) Time history diagram, (b) K value, (c) p–s
plot

test is omitted here; for details, please refer to the [33, 34]). Furthermore, by the use of QR
decomposition, the corresponding Lyapunov exponents are obtained, as shown in Fig. 11
and Fig. 12, respectively.

The above numerical study shows that the system exhibits a rich dynamical behavior,
and contains chaotic solutions and periodic solutions, which verifies once again that trun-
cation steps k and fractional order α play an important role in the system.
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Figure 11 Lyapunov exponents for u = –0.8, α = 0.15, and σ = 0.01

Figure 12 Lyapunov exponents for u = –0.8, α = 0.6, and σ = 0.01

7 Discussion and conclusion
In this paper, a stochastic discrete fractional-order chaotic system with short memory is
proposed, which possesses two equilibrium points. By the use of the Lyapunov function
theory, the stability conditions of equilibrium points in the sense of probability are ob-
tained. It shows that the stability region seems to decrease as memory step k increases or
as fractional-order α increases. Unfortunately, however, we have only observed the phe-
nomenon from the point of view of numerical methods, and the theoretical study is still
an open question. In addition, the Lyapunov exponents are captured by using the QR de-
composition algorithm. The study shows that the system exhibits rich dynamical behavior
in the sense of paths, such as chaotic solutions and periodic solutions. From a modeling
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point of view, these results lead us to believe that the stochastic fractional-order version
has better application prospects. We hope that our results will be helpful in exploring the
modeling and dynamical behavior of discrete fractional-order systems.

Based on our work, there are some extensions to investigate more information for the
discrete fractional-order chaotic system with stochastic perturbations, such as the Caputo
fractional-order chaotic system or system under multiple stochastic disturbances, which
will be studied in our future work.
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